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a b s t r a c t

A two-dimensional heat conduction problem in Cartesian coordinates subject to a periodic-in-space
boundary condition is analyzed by the Green’s functions approach. It is pointed out that when the fre-
quency of the spatial periodic heating equates one of the natural frequencies (eigenvalues) of the system,
the solution of the 2D heat conduction problem can be written down very simply as the product of the
periodic surface condition (termed the ‘‘eigen-periodic”) by the solution of a 1D fin problem along the
nonhomogeneous direction. This result suggests a novel and simple algebraic equation for determining
the thermal conductivity of thin films placed on substrates under steady state conditions. High space fre-
quencies of the sinusoidal heating, larger than the deviation frequency, are used to make negligible the
thermal deviation effects due to the presence of the substrate.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The exact analytical study of periodic-in-space boundary condi-
tions in transient and steady state heat conduction is relevant for
various reasons. One is for verification purposes of large multi-
dimensional numerical heat transfer codes [1–4] and related
intrinsic verification of exact analytical solutions [5]. Another is
for determining the thermal conductivity of thin films [6–11] (used
in a variety of micro-electromechanical systems, i.e., MEMS) placed
on substrates under steady state conditions. (In this case, the spa-
tially periodic heating can experimentally be obtained by using the
pulsed-laser interference fringes as described in Refs. [7–9].) Also,
contrary to what happens in thermal convection, where spatially
periodic boundary temperatures in porous media were investi-
gated [12–14], in heat conduction spatial periodic heating (or cool-
ing) is somewhat neglected.

In this paper, we consider a 2D transient heat conduction prob-
lem subject to a periodic-in-space surface heat flux which satisfies
the boundary conditions in the homogeneous direction. Also, the
body is initially at zero temperature and the remaining boundary
conditions of the 1st kind are homogeneous (Section 2). The sur-
face condition (termed the ‘‘eigen”-periodic) of the present study
ll rights reserved.
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is motivated by the fact that it reduces the dimensions of the prob-
lem (in the current case, 2D ? 1D). In this case, no thermal devia-
tion effects are caused by the homogeneous boundary conditions
perpendicular to the heating surface. Therefore, the solution of
the problem obtained by Green’s functions (Section 3) can simply
be written as the product of the ‘‘eigen-periodic” surface condition
by the solution of a 1D fin transient problem along the nonhomo-
geneous direction of the 2D slab (Section 4).

Different boundary conditions at the face parallel to the surface
with an ‘‘eigen-periodic”-in-space heat flux are then investigated
(Section 5). Special cases including the boundary condition of the
zero-th kind (semi-infinite solid) and the perfect thermal contact
of the first body to a semi-infinite body are also analyzed.

To derive a simple algebraic equation that involves a property of
engineering interest such as the thermal conductivity, we analyze
the thermal penetration effects due to an ‘‘eigen-periodic”-in-
space heating; also analyzed are the thermal deviation effects
due to a homogeneous boundary condition (where this boundary
can be parallel or perpendicular to the surface heated by a spatial
‘‘eigen-periodic” heat flux). For that purpose, we define penetration
and deviation frequencies analogous to the definition of penetra-
tion and deviation times given by the same authors in [15].

The penetration frequency is defined as the frequency that is
needed for the steady state temperature at an interior point in a
2D semi-infinite solid to be just affected by an ‘‘eigen-periodic”-
in-space heating at a boundary surface (Section 6). The deviation
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Nomenclature

Cf dimensionless constant related to the dimensionless
frequency bf of the periodic-in-space heating, bfW/L

G Green’s function (subscript designates the boundary
conditions) (m�1)

k thermal conductivity (W/(m K))
L rectangle length in the x-direction (m)
q0 heat flux (W/m2)
t time (s)
T temperature (K)
Ty temperature along y (K)
u ‘cotime’, t � s (s)
W rectangle length in the y-direction (m)
x, y space coordinates (m)
X, Y eigenfunctions along x, y
a thermal diffusivity (m2/s)
bf dimensionless frequency of the periodic-in-space heat-

ing, mfL
bm m th dimensionless eigenvalue in the x-direction, mmL
gn n th dimensionless eigenvalue in the y-direction, cnW
cn n th eigenvalue along y (m�1)

mf frequency of the periodic-in-space heating (m�1)
mm m th eigenvalue along x (m�1)
h dimensionless temperature along y, Ty/TK

Subscripts
c.t. complementary transient component
F fin
I, J indices, i.e., 1, 2 or 3. These integers denote boundary

conditions of 1st, 2nd or 3rd kind at the faces x = 0
and x = L of the rectangle

K, L indices, i.e., 1, 2 or 3. These integers denote boundary
conditions of 1st, 2nd or 3rd kind at the faces y = 0
and y = W of the rectangle

s.s. steady-state component
x, y in the x- and y-direction

Superscript
� dimensionless (space: ~x¼x=Land~y¼y=W; time ~t¼at=W2

and ~u¼au=W2; Green’s function: eGXIJ¼GXIJL and eGYKL¼
GYKLW)

Fig. 1. Transient heat conduction problem in a rectangle with zero initial
temperature and homogeneous boundary conditions of the first kind at all
boundary surfaces except an ‘‘eigen-periodic” heat flux variation along x at y = 0.
Problem notation is X11B00 Y21B(xE)0T0.
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frequency is however defined as the frequency that is needed for
the steady state temperature at an interior point of a 2D finite solid
(heated at a boundary through an ‘‘eigen-periodic”-in-space
source) to be just affected by the presence of a homogeneous
boundary condition (Section 7). By ‘‘just affected” we mean to
some sufficiently small numerical value such as 10�2 (typical of
thermal boundary layer thickness) or even the much smaller value
of 10�10.

Once the penetration and deviation frequencies are calculated, a
simple algebraic equation involving thermal conductivity can be
found (Section 8). In the thermal grating technique [7–9] used
for thin films, the pulsed-laser excitation takes a short while so
allowing measurements of the thermal diffusivity by monitoring
the temperature changes with time. In contrast, in proposed tech-
nique the pulsed-laser excitation is applied until the steady state
condition is reached. As a matter of fact, the solution does have a
steady state but the implementation experimentally has a quasi-
steady state. We need to add a constant heat flux component so
that the heat flux never becomes negative (Section 8). For that rea-
son, the proposed solution can fall among the so-called steady
state (film-on-substrate) techniques ([6], Section 3.4.2). It has the
advantage that a temperature gradient can be formed in the direc-
tion essentially perpendicular to that of heat flux, so allowing mea-
surements of the thermal conductivity of thin layers.

2. Problem formulation

A two-dimensional transient heat conduction problem with a
periodic-in-x heat flux variation applied to the y = 0 face of the
rectangle L by W is shown in Fig. 1. The boundary conditions at
x = 0, x = L and y = W are homogeneous and of the 1st kind. Also,
the temperature is initially uniform which without loss of general-
ity can be zero and the thermal properties are independent of loca-
tion and temperature.

The above problem can be denoted by X11B00 Y21B(x6)0T0.
(See [[16], Chapter 2] for a fuller discussion of the numbering sys-
tem devised by Beck et al. for Cartesian heat conduction.) In brief, X
and Y denote the Cartesian directions; ‘‘(x6)” denotes a sinusoidal
space function in the x-direction; and T0 indicates a zero initial
temperature.
Now, the periodic variation along x of the heat flux applied at
y = 0 is taken as the solution of the eigenvalue problem in the
x-direction, namely Xf(bf, x/L) = sin(bfx/L), where bf = fp with
f = 1, 2, 3,. . . For that reason, it will be termed the ‘‘eigen-periodic”
boundary condition and will use ‘‘(xE)” as a notation afterwards.

A mathematical statement of the above linear heat conduction
problem is

@2T
@x2 þ

@2T
@y2 ¼

1
a
@T
@t

ð0 < x < L; 0 < y < W; t > 0Þ ð1aÞ

Tð0; y; tÞ ¼ 0 TðL; y; tÞ ¼ 0 ð1bÞ

� k
@T
@y

� �
y¼0
¼ q0 sin bf

x
L

� �
Tðx;W; tÞ ¼ 0 ð1cÞ

Tðx; y; 0Þ ¼ 0 ð1dÞ

where the only nonhomogeneous term (or driving term) is in Eq.
(1c).
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3. Solution procedure

The above 2D transient heat conduction problem may be solved
using conventional solution procedures such as the separation of
variables (SOV) approach [17] and the Green’s functions approach
[16,18,19]. However, as this problem is nonhomogeneous due to
the nonhomogeneity of the boundary condition at y = 0, the stan-
dard SOV method cannot be applied in a straightforward and effi-
cient manner. Its application requires that the heat conduction
problem (1) be split up into two simpler ones (that may then be
solved using SOV) in the following manner:

1. A nonhomogeneous steady-state problem with a nonhomo-
geneous boundary condition at y = 0 (denoted X11B00
Y21B(xE)0) whose solution gives a contribution to the so-called
steady-state component Ts.s.(x, y) = T( x, y,1) of the complete
temperature;

2. A homogeneous time-dependent problem whose initial tem-
perature becomes the negative of the previous steady state
result. Its solution gives what we call the ‘‘complementary tran-
sient” component Tc.t.(x, y, t). (Problem notation is X11B00
Y21B00T(x�y�).)

As regards Green’s functions (GF), they are very powerful and
appropriate tools for obtaining solutions of nonhomogeneous heat
conduction problems, including time- and space-variable bound-
ary conditions and time- and space-variable volume energy gener-
ation. For these reasons, the problem given by Eqs. (1a)–(1d) is
solved next using Green’s functions. Then, the temperature in
dimensionless form is ([16], p. 52)

Tð~x; ~y;~tÞ
q0W=k

¼
Z ~t

~u¼0
IxEð~x; ~uÞeGY21ð~y;0; ~uÞd~u ð2Þ

where ~x¼ x=L; ~y¼ y=W; ~t¼at=W2; ~u¼au=W2 and eGYKL¼GYKLW . In
addition, we have

IxEð~x; ~uÞ ¼
Z 1

~x0¼0
sinðbf ~x

0ÞeGX11ð~x; ~x0; ~uÞd~x0 ð3Þ

where eGX11 ¼ GX11L. Eqs. (2) and (3) are now solved using the large-
cotime form of Green’s functions. They are given by Beck et al. ([16],
p. 482, p. 491)

eGX11ð~x; ~x0; ~uÞ ¼ 2
X1
m¼1

e�C2
m ~u sinðbm~xÞ sinðbm~x0Þ ð4aÞ

eGY21ð~y; ~y0; ~uÞ ¼ 2
X1
n¼1

e�g2
n ~u cosðgn~yÞ cosðgn~y0Þ ð4bÞ

where Cm = bmW/L, bm = mp and gn = (n � 1/2)p. Using Eq. (4a) in
the integral (3) and re-arranging give

IxEð~x; ~uÞ ¼ 2
X1
m¼1

e�C2
m ~u sinðbm~xÞ

Z 1

~x0¼0
sinðbf ~x

0Þ sinðbm~x0Þd~x0 ð5Þ

As the periodic nonhomogeneous boundary condition Xf ðbf ; ~x0Þ ¼
sinðbf ~x0Þ has been chosen in such a way as to satisfy the homoge-
neous boundary conditions (1b) in the x-direction of the problem
(1), we have orthogonality in Eq. (5). The result is

IxEð~x; ~uÞ ¼ sinðbf ~xÞe�C2
f

~u ð6Þ
where Cf = bfW/L. Substituting Eq. (6) in Eq. (2) gives

Tð~x; ~y;~tÞ
q0W=k

¼ sinðbf ~xÞ
Z ~t

~u¼0
e�C2

f
~ueGY21ð~y;0; ~uÞd~u ð7Þ

Eq. (7) states that, for the case of spatially eigen-periodic but
time invariant heat flux, the temperature solution can be written
down very simply as the product of the same ‘‘eigen-periodic” sur-
face heat flux by the solution of an integral along the nonhomo-
geneous direction.
Substituting Eq. (4b) in Eq. (7) and integrating over the cotime
give

Tð~x; ~y;~tÞ
q0W=k

¼ sinðbf ~xÞ 2
X1
n¼1

cosðgn~yÞ
C2

f þ g2
n

1� e�ðC
2
f þg2

nÞ~t
h i( )

ð8Þ
4. Temperature solution

Eqs. (7) and (8) are important. They state that the current 2D
problem ‘‘simply” reduces to an effective 1D problem in the
y-direction. Only one single-summation appears in the solution
Eq. (8) in contrast to the double summation form typical of 2D
transient problems. Thus the temperature solution Eq. (8) may be
rewritten as

Tð~x; ~y;~tÞ
q0W=k

¼ sinðbf ~xÞhð~y;~t;gn;Cf Þ ð9Þ

where hð~y;~t;gn;Cf Þ is the dimensionless temperature of a 1D tran-
sient heat conduction problem along y. This temperature has two
components, a steady-state component hs:s:ð~yÞ and what we call
the ‘‘complementary transient” component hc:t:ð~y;~tÞ. They are

hs:s:ð~yÞ ¼ 2
X1
n¼1

cosðgn~yÞ
C2

f þ g2
n

ð10aÞ

hc:t:ð~y;~tÞ ¼ �2
X1
n¼1

cosðgn~yÞ
C2

f þ g2
n

e� C2
f þg2

nð Þ~t ð10bÞ
4.1. Governing equations of the 1D problem

The governing equations of the 1D transient heat conduction
problem in the y-direction stated before can now be derived intro-
ducing Eq. (9) into the defining Eq. (1) of the original 2D problem
denoted by X11B00 Y21B(xE)0T0. In particular, introducing Eq. (9)
into Eq. (1a) gives

@2h

@ð~yÞ2
� C2

f h ¼
@h

@~t
ð0 < ~y < 1; ~t > 0Þ ð11aÞ

where Cf = bfW/L. Introducing Eq. (9) into the remaining Eqs. (1b)–
(1d) and while bearing in mind that the Xf ¼ sinðbf ~xÞ satisfies the
boundary conditions in the x-direction, we get a system of bound-
ary and initial equations along y, that is,

� @h
@~y

� �
~y¼0
¼ 1 hð1;~tÞ ¼ 0 hð~y; 0Þ ¼ 0 ð11bÞ

Eq. (11) describes a transient heat conduction problem in a fin
of constant cross section aligned with the y-axis and having a non-
homogeneous boundary condition of the 2nd kind at y = 0 and a
homogeneous one of the 1st kind at y = W. In particular, the C2

f h
term is recognized to be the ‘‘fin” term describing the side heat
losses for a fin ([16], p. 65). This fin problem may be denoted as
YF21B10T0, where the F denotes the fin.

Comparing Eqs. (7) and (9) yields the solution of the above 1D
fin problem is given by the integral appearing in Eq. (7).
4.2. Solution procedure using ‘‘eigen-transformation”

From what has been said before, it follows that Eq. (9) may be
considered as a key transformation capable of reducing the dimen-
sions of a transient heat conduction problem when it is has a peri-
odic-in-x surface heat flux which satisfies the boundary conditions
in the homogeneous direction. As in Section 2 we have termed
this particular periodic surface heat flux as the ‘‘eigen-periodic”
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boundary heat flux, transformation (9) may hence be termed the
‘‘eigen-transformation”.

Therefore, the solution of a 2D transient heat conduction problem
having an ‘‘eigen-periodic” surface heat flux can be written down
very simply as the product of the same ‘‘eigen-periodic” surface heat
flux by the solution of a 1D fin transient problem along the nonho-
mogeneous direction, whose components are given by Eq. (10).

By using the algebraic identities given by Beck and Cole in Ref.
([4], Appendix B) for the YF21 case, the steady-state component Eq.
(10a) can also be written as

hs:s:ð~yÞ ¼
e�Cf ~y � e�Cf ð2�~yÞ

Cf ð1þ e�2Cf Þ
ð12Þ

The above results are generalized in Appendix A where the
problem denoted by XIJB00 YKLB(xE)0T0 is treated and discussed.
The I, J, K and L values can be 1, 2 or 3 corresponding to the bound-
ary condition kinds.

5. X11B00 Y2LB(xE)0T0 problems

Consider the two-dimensional transient heat conduction prob-
lem denoted X11B00 Y2LB(x6)0T0. This problem has a sinusoidal-
in-x surface heat flux indicated by ‘‘(x6)” ([16], Chapter 2) applied
to its y = 0 face. We can write �kð@T=@yÞy¼0 ¼ q0 sinðbf ~xÞ. This spa-
tially periodic variation satisfies the boundary conditions in
the homogeneous direction (i.e., along x) only if bf = fp with
f = 1, 2, 3,. . . We currently assume that this is verified; hence, the
sinusoidal-in-x surface condition becomes an ‘‘eigen-sinusoidal”
condition, that is, ‘‘(x6)” � ‘‘(xE)”.

The above problem has zero as initial temperature and homoge-
neous boundary conditions of the first kind in the x-direction. The
boundary condition at y = W is also homogeneous but can be of any
kind. The L values can in fact be 1, 2, 3, 0 or C0 corresponding to the
boundary condition kinds ([16], Chapter 2). In particular, the
boundary condition of the zero-th kind indicates that the solid is
semi-infinite; the ‘‘C0” however denotes a perfect thermal contact
of the first layer to a semi-infinite body (from W to infinity and
0 < x < L).

The boundary condition of the first kind (L = 1) at y = W was
carefully analyzed in the previous sections. The other kinds are dis-
cussed in next subsections.

5.1. X11B00 Y22B(xE)0T0 problem

The solution of this problem is in the form of Eq. (9) where
Cf = fp(W/L) and h is the solution of the 1D fin transient problem
denoted by YF22B10T0. This solution is given by the integral
appearing in Eq. (7) where eGY21ð~y; ~y0; ~uÞ has to be replaced witheGY22ð~y; ~y0; ~uÞ defined as ([16], p. 492)

eGY22ð~y; ~y0; ~uÞ ¼ 1þ 2
X1
n¼1

e�g2
n ~u cosðgn~yÞ cosðgn~y0Þ ð13Þ

where gn = np. Solving the above integral gives the steady state hs.s.

and complementary transient hc.t. components of h, that is,

hs:s:ð~yÞ ¼
1

C2
f

þ 2
X1
n¼1

cosðnp~yÞ
C2

f þ ðnpÞ
2 ð14aÞ

hc:t:ð~y;~tÞ ¼ �
e�C2

f
~t

C2
f

þ 2
X1
n¼1

cosðgn~yÞ
C2

f þ g2
n

e�ðC
2
f þg2

nÞ~t

" #
ð14bÞ

By using the algebraic identities given in Ref. ([4], Appendix B)
for the YF22 case, the steady-state component Eq. (14a) can also be
written as

hs:s:ð~yÞ ¼
e�Cf ~yþe

�Cf ð2�~yÞ

Cf ð1� e�2Cf Þ
ð15Þ
The temperature solution is the sum of the above two parts
multiplied by the sinðbf ~xÞ function in Eq. (9). It is explicitly given
by

Tð~x;~y;~tÞ
q0W=k

¼ sinðbf ~xÞ
(

e�Cf ~yþe�Cf ð2�~yÞ
Cf ð1�e�2Cf Þ

� e�C2
f
~t

C2
f

þ2
X1
n¼1

cosðgn~yÞ
C2

f þg2
n

e�ðC
2
f þg2

nÞ~t

" #)
ð16Þ

The above summation converges rapidly with only a few terms
needed except for small values of ~t; for example, for errors less than
10�5, five or fewer terms are needed.

5.2. X11B00 Y23B(xE)0T0 problem

In this case, the boundary surface at y = W exchanges heat by
convection with the surrounding ambient kept at zero tempera-
ture. Following the same procedure, the solution to this problem
is taken as the product of the spatial eigen-periodic heat flux by
the solution of the fin transient problem denoted YF23B10T0. It is

Tð~x; ~y;~tÞ
q0W=k

¼ sinðbf ~xÞ
(

e�Cf ~y þ DW e�Cf ð2�~yÞ

Cf ð1� DW e�2Cf Þ

�2
X1
n¼1

ðg2
n þ B2

WÞ cosðgn~yÞe�ðC
2
f þg2

nÞ~t

ðg2
n þ B2

W þ BWÞðC2
f þ g2

nÞ

)
ð17Þ

where Cf = bf(W/L), gntan gn = BW and DW = (Cf � BW)/(Cf + BW). Also,
BW = hWW/k is the Biot number at y = W, where hW is the heat trans-
fer coefficient.

Note that in Eq. (17) we have used the algebraic identities given
in Ref. ([4], Appendix B) for the YF23 case. Also, when BW ? 0, Eq.
(17) reduces to Eq. (16); on the contrary, when BW ?1, Eq. (17)
reduces to Eq. (8) whose steady state part is also given by Eq.
(12). This confirms that the YF21 and YF22 cases bracket the
YF23 case. For that reason, the case of convective boundary condi-
tion (L = 3) is not explicitly considered afterwards.

5.3. X11B00 Y20B(xE)T0 problem

Let us now assume that the solid is semi-infinite in the y-direc-
tion. The solution to this problem may still be written in the form
of Eq. (9), that is,

Tð~x; ~y;~tÞ
q0W=k

¼ sinðbf ~xÞhYF20ð~y;~tÞ ð18Þ

where bf = fp with f = 1, 2, 3,. . . and hYF20ð~y;~tÞ is the solution of the
1D ‘‘long” fin transient problem along y. It may be found by using
the GF method. This solution is given by the integral appearing in
Eq. (7) where eGY21ð~y; ~y0; ~uÞ has to be replaced with ~GY20ð~y; ~y0; ~uÞ de-
fined as ([16], p. 489)

eGY20ð~y;0; ~uÞ ¼
1ffiffiffiffiffiffiffi
p~u
p e�

~y2

4~u ð19Þ

Solving the resultant equation using integral # 12 of Ref. ([16], p.
428) gives hYF20ð~y;~tÞ. The temperature solution is

Tð~x; ~y;~tÞ
q0W=k

¼ 1
2Cf

sinðbf ~xÞ �eCf ~yerfc
~y

2
ffiffi
~t
p þ Cf

ffiffi
~t

p� ��
þe�Cf ~yerfc

~y

2
ffiffi
~t
p � Cf

ffiffi
~t

p� ��
ð20Þ

Notice that this transient 2D solution does not have any sum-
mation. For time going to infinity, we have the steady-state
component

Tð~x; ~y;1Þ
q0W=k

¼ sinðbf ~xÞhYF20ð~y;1Þ hYF20ð~y;1ÞCf ¼ e�Cf ~y ð21Þ
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which has a simple exponential decaying with the y-coordinate
(typical steady behaviour of ‘‘long” fins [20]).

5.4. X11B00 Y2C0B(xE) problem

Consider the steady state part of the heat conduction problem
where a 2D plate L by W with thermal conductivity k1 is attached
to a semi-infinite body (from W to infinity and 0 < x < L) having k2

as thermal conductivity. The interface contact is considered to be
perfect and the boundary conditions at x = 0 and x = L are homoge-
neous and of the first kind. An ‘‘eigen-sinusoidal”-in-x surface con-
dition of the 2nd kind is applied at the y = 0 face of the first layer.

The above problem is denoted X11B00 Y2C0B(xE), where ‘‘C”
would indicate a perfect thermal contact. It is mathematically
described by

@2T1

@x2 þ
@2T1

@y2 ¼ 0 ð0 < x < L; 0 < y < WÞ ð22aÞ

@2T2

@x2 þ
@2T2

@y2 ¼ 0 ð0 < x < L; W < y <1Þ ð22bÞ

T1ð0; yÞ ¼ 0; T1ðL; yÞ ¼ 0 ð22cÞ
T2ð0; yÞ ¼ 0; T2ðL; yÞ ¼ 0 ð22dÞ

� k1
@T1

@y

� �
y¼0
¼ q0 sin bf

x
L

� �
; T2ðx;1Þ ¼ finite ð22eÞ

T1ðx;WÞ ¼ T2ðx;WÞ k1
@T1

@y

� �
y¼W

¼ k2
@T2

@y

� �
y¼W

ð22fÞ

where bf = fp with f = 1, 2, 3,. . . Based on analyses for homogeneous
bodies with ‘‘eigen-periodic”-in-space boundary heat fluxes
(Sections 2–4), it is reasonable to try to obtain a solution for this
problem using Eq. (9). We have

T1ð~x; ~yÞ
q0W=k1

¼ sinðbf ~xÞh1ð~yÞ ð23aÞ

T2ð~x; ~yÞ
q0W=k1

¼ K sinðbf ~xÞh2ð~yÞ ð23bÞ

where h1 and h2 are the solution of a 1D two-layer fin steady-state
problem along the nonhomogeneous direction. Also, K = k2/k1.

The defining equations of the above fin problem denoted by
YF2C0B1 can be derived introducing Eq. (23) into the governing
Eq. (22) of the original 2D problem. As the boundary conditions
in the x-direction are satisfied, we obtain

d2h1

d~y2 � C2
f h1 ¼ 0;

d2h2

d~y2 � C2
f h2 ¼ 0 ð24aÞ

� dh1

d~y

� �
~y¼0
¼ q0W

k1
; h2ð1Þ ¼ finite ð24bÞ

h1ð1Þ ¼ h2ð1Þ;
dh1

dy

� �
~y¼1
¼ K

dh2

dy

� �
~y¼1

ð24cÞ

where Cf = bfW/L. The solution is a linear combination of
exponentials

h1ð~yÞ ¼
1
Cf

e�Cf ~y þ je�Cf ð2�~yÞ

1� je�2Cf
ð25aÞ

h2ð~yÞ ¼
1
Cf

1
1þ K

2e�Cf ~y

1� je�2Cf
ð25bÞ

where j = (1 � K)/(1 + K). Note that for a zero conductivity second
material or, in other words, a perfect insulator, K = 0 ()j = 1),
which is the same as for a 2D finite plate case insulated at y = W
and treated in Section 5.1 (Y22 case). For an infinite conductivity
second material (ideal conductor), however, K ?1 ()j = �1),
which is the same as for a 2D finite plate case kept at zero temper-
ature at y = W and analyzed in Sections 2–4 (Y21 case). This con-
firms that the YF21 and YF22 cases bracket the YF2C0 case. For
that reason, the two-layer case (L = C0) is not explicitly considered
afterwards.

Also, for K = 1 ()j = 0), Eqs. (25a) and (25b) reduce to the well-
known solution of the 1D ‘‘long” fin steady-state problem (see
Section 5.3).

5.5. Steady-state components of the X11B00 Y2LB(xE)0T0 problems

It follows from the complementary transient component of Eqs.
(8) and (16) that the steady state condition may be considered
reached with error less than 10�n when

e�ðC
2
f þg2

1Þ~t < 10�n ) ~t > ~ts:s: ¼
n lnð10Þ
C2

f þ g2
1

ð26Þ

A conservative estimate of the above dimensionless time ~ts:s: can
be obtained for g1 = p/2 (YF21 case). Note that Eq. (26) with g1 = p/2
gives a conservative estimate also for a two-layer configuration. In
fact, as has already been observed before, the YF21 (g1 = p/2) and
YF22 (g1 = p) cases bracket the YF2C0 case.

Consider now the steady-state component of the solutions
listed before. Then this equation becomes
Tð~x; ~y;1Þ

q0W=k
¼ sinðbf ~xÞhYF2Lð~y;1Þ ð27aÞ

where

hYF2Lð~y;1ÞCf ¼

e�Cf ~y L ¼ 0
e
�Cf ~y�e

�Cf ð2�~yÞ

1þe
�2Cf

L ¼ 1

e
�Cf ~yþe

�Cf ð2�~yÞ

1�e
�2Cf

L ¼ 2

8>><>>: ð27bÞ

Fig. 2 shows the effect of the boundary condition at ~y ¼ 1 on the
steady state solution h�YF2Lð~y;1Þ ¼ Cf hYF2Lð~y;1Þ given by Eq. (27b)
for different values of ~y as a function of Cf. It may be noted that,
for large values of Cf (>5), the YF21 and YF22 cases (including the
YF23 and YF2C0 cases) both reduce to the simpler YF20 one. In
other words, for sufficiently large values of Cf, the thermal devia-
tion effects on the steady state solution due to the homogeneous
boundary condition (at ~y ¼ 1) parallel to the heated surface (at
~y ¼ 0) are negligible.

The above result suggests that we can define a deviation fre-
quency as we defined a deviation time in Ref. [15]. However,
according to what was done in [15] where the concept of penetra-
tion time was first introduced, it requires that a penetration fre-
quency be defined here. They are treated in next two sections.

6. Penetration frequency

The penetration frequency is the frequency needed for the stea-
dy state temperature at a point ~y in a 2D semi-infinite solid to be
just affected (at the level of 10�n) by an ‘‘eigen-periodic”-in-space
heating at the boundary surface ~y ¼ 0.

The heated surface is indicated as being ‘active’ and it is respon-
sible for the thermal penetration effects. These effects may be esti-
mated as rð~yÞ ¼ h�YF20ð~y;1Þ, where h�YF20ð~y;1Þ ¼ e�Cf ~y. Solving this
equation analytically for different values of r = 10�n for the dimen-
sionless frequency Cf,pen gives

Cf ;pen~y ¼ n lnð10Þ or mf ;pen ¼
n lnð10Þ

y
ð28Þ

In fact, as Cf = bf(W/L), bf = mfL and ~y ¼ y=W , we can write: Cf ~y ¼ mf y,
where mf is the frequency of the applied ‘‘eigen-sinusoidal”-in-space
heating. In Eq. (28), y is the distance between the ‘active’ thermal
surface located at y = 0 and the point of interest y, as shown in
Fig. 3a. A plot of the penetration frequency Cf,pen versus ~y for three
different values of r = 10�n is given in Fig. 4a.
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Fig. 2. h�YF2Lð~y;1Þ ¼ Cf hYF2Lð~y;1Þ of Eq. (27b) plotted versus Cf = bf(W/L) for different boundary conditions at ~y ¼ 1, namely L = 0, 1 or 2. Solution for steady state at: (a) ~y ¼ 0;
(b) ~y ¼ 1=4; (c) ~y ¼ 1=2 and (d) ~y ¼ 3=4.
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The important and amazing point is that there is a relatively lit-
tle difference for the dimensionless penetration frequencies when
n varies from 2 to 10. In fact, decreasing the penetration effects on
steady state temperature from 10�2 to 10�10, a factor of 108, results
in an increase in the dimensionless penetration frequency only
from 4.6 to 23, that is only a factor of 5.

Eq. (28) also provides a conservative estimate for the penetration
distance ypen, that is, the distance from the boundary surface y = 0
(heated through an ‘‘eigen-periodic”-in-space source) of a 2D
semi-infinite solid at which the steady state temperature is just af-
fected at a given frequency mf by this heating (Fig. 3a). Thus, we have

Cf ~ypen ¼ n lnð10Þ or ypen ¼
n lnð10Þ

mf
ð29Þ

where ypenmf is the dimensionless penetration distance. Decreasing
the penetration effects from 10�2 to 10�10 results in an increase
in the penetration distance from about 4.6 to 23 (only a factor of
5), where the constant 4.6 is not far from the well-known constant
5 occurring in the laminar boundary layer thickness [20].

7. Deviation frequency

The deviation frequency is the frequency needed for the steady
state temperature at a point ~y in a 2D finite solid (heated at a
boundary through an ‘‘eigen-periodic”-in-space source) to be just
affected by the presence of a homogeneous boundary condition.
This boundary (called ‘inactive’) can be parallel or perpendicular
to the heated surface) and can cause thermal deviation effects.
They are discussed in next two subsections.

7.1. Homogeneous boundary parallel to the heating surface

The deviation effects due to this boundary may be estimated
as

eð~yÞ ¼ jh�YF2Lð~y;1Þ� h�YF20ð~y;1Þj ðL ¼ 1 or 2Þ ð30Þ

Substituting Eq. (27b) in Eq. (30) and solving analytically for dif-
ferent values of e = 10�n for the dimensionless frequency Cf,dev give

Cf ;dev ¼
1
2

ln½1þ 2 � 10n coshðCf ;dev ~yÞ� ðL ¼ 1 or 2Þ ð31Þ

For large Cf ;dev ~y we obtain 2 coshðCf ;dev ~yÞ � eCf ;dev ~y. Then, the pre-
vious equation becomes

Cf ;devð2� ~yÞ � n lnð10Þ or mf ;dev �
n lnð10Þ
ð2W � yÞ ð32Þ

It is relevant to note that the above length (2W � y) is greater
than the distance between the ‘inactive’ surface (homogeneous
boundary condition) at y = W and the point of interest y, namely
(W � y), as shown in Fig. 3b. This result is in accordance with what
was found for the deviation time due to an ‘inactive’ boundary par-
allel to an ‘active’ one in transient heat conduction (see Section 4 of
Ref. [15]). A plot of the deviation frequency Cf,dev versus ~y for three
different values of e = 10�n is given in Fig. 4b.
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Eq. (32) also provides a conservative estimate for the deviation
distance ydev, that is, the distance measured from the boundary
y = 0 (heated through an ‘‘eigen-periodic”-in-space source) of a
2D finite solid at which the steady state temperature is just af-
fected at a given frequency mf by the homogeneous boundary con-
dition at y = W (Fig. 3b). Thus, we have

Cf ð2� ~ydevÞ � n lnð10Þ or ydev � 2W � n lnð10Þ
mf

ð33Þ

where ydevmf is the dimensionless deviation distance.
As regards the boundary at y = W, also a second material could

begin there (followed by as many layers as desired; the contact
could be perfect or imperfect); or some nonlinear condition such
as a radiation boundary condition which would again be ‘‘homoge-
neous,” that is, not introducing heating or cooling at that surface
until the effect of the y = 0 boundary reaches there. At y = W there
could even be freezing or melting.

For all of the above possible conditions at y = W, Eqs. (32) and
(33) are still valid. For instance, if we consider the two-layer steady
state eigen-periodic problem of Section 5.4, the thermal deviation
effects due to the semi-infinite second layer may be estimated as

eð~yÞ ¼ jh�1;YF2C0ð~y;1Þ � h�YF20ð~y;1Þj ð34Þ

where h�1;YF2C0ð~y;1Þ ¼ Cf h1;YF2C0ð~y;1Þ is given by Eq. (25a). Substi-
tuting this equation in Eq. (34) and solving for different values of
e = 10�n for the dimensionless frequency Cf,dev give
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Cf ;dev ¼
1
2

ln½1þ 2 � 10n coshðCf ;dev ~yÞ� þ ln jjj ð35Þ

It differs from Eq. (31) because of the term related to j. For large
Cf ;dev ~y it becomes

Cf ;devð2� ~yÞ � n lnð10Þ þ 2 ln jjj ðjjj 2 ð0;1�Þ ð36Þ

The values possible for j are between �1 and 1. For k2 > k1, we
have j 2 [�1, 0). On the contrary, for k2 < k1, we have j 2 (0, 1]. For
the special case of j = 0 (i.e., k2 = k1), the two-layer configuration
reduces to a semi-infinite body and, hence, there exist no thermal
deviation effects on the steady state temperature. For j = ±1, Eq.
(36) reduces to the simpler Eq. (32). It is also interesting to observe
that the deviation frequencies given by Eq. (36) are smaller than
the corresponding ones obtainable for |j| = 1 because ln |j| is al-
ways less than zero. Therefore, Eq. (36) can also be used in this case
as a conservative estimate for the deviation frequencies.

7.2. Homogeneous boundary perpendicular to the heating surface

When the frequency bf of the applied thermal force q0 sinðbf ~xÞ
equates one of the natural frequencies (or eigenvalues) of the sys-
tem, the homogeneous boundary conditions at x = 0 and x = L (per-
pendicular to the heating surface) cause no thermal deviation
effects on the steady state temperature. In such a case, in fact,
the temperature is given by Eqs. (27) and the problem is reduced
from 2D to 1D.

8. Thermal conductivity in thin films

From what was said in the previous sections, one solution for
determining the thermal conductivity of a thin film placed on a
substrate can be based on a time-independent, spatial sinusoidal-
variation surface heat flux, as shown in Fig. 5. This sinusoidal-in-
space heating may experimentally be obtained by using the
pulsed-laser interference fringes [7–9].

A pulsed high-power laser beam can be divided by a beam split-
ter into two beams of equal intensity. These two beams of spatial
Fig. 5. Schematic illustrating the film-substrate geometry used in the analytical and
calculations. The spatial sinusoidal heat flux q0 sinðbf ~xÞ and the positive uniform
heat flux qm P q0 at y = 0 are indicated.
and longitudinal coherence can be intersected on the thin layer
surface y = 0 by paraboloidal mirrors under an angle # and gener-
ate an optical interference fringe pattern whose intensity distribu-
tion is spatially sinusoidal. Its frequency mf is the so-called wave
number of the fringe given by 2p/K, where K is the grating period
or fringe spacing. This period may be taken as K ¼ k=½2 sinð2#Þ�,
where k is the laser wavelength and # is the interference angle in
radians. Therefore, by simply changing the crossing angle # of
the two pump beams, the above period can adequately be varied.

However, in the thermal grating technique [7–9] (which is a
time-domain technique) used for thin films, the pulsed-laser
excitation takes a short while so allowing measurements of the
thermal diffusivity. In contrast, in proposed technique the
pulsed-laser excitation is applied until the steady state condition
is reached. As a matter of fact, the solution does have a steady state
but the implementation experimentally has a quasi-steady state.
We need to add a constant heat flux component so that the heat
flux never becomes negative, as shown afterwards.

As we have a thin layer-substrate composite, the steady state
surface temperature at y = 0 can be obtained by using the simple
Eqs. (23a) and (25a) provided the periodic-in-space heating be
eigen-sinusoidal, that is, mf � fp/L (f = 1, 2, 3,. . .), where mf ¼ 4p
sinð2#Þ=k. Therefore, we have

T1ð~x;0Þ
q0W=k1

¼ sinðbf ~xÞ
1
Cf

1þ je�2Cf

1� je�2Cf
if k ¼ 4 sinð2#ÞL

f
ð37Þ

The maximum temperature difference at y = 0 is between the points
A and B of Fig. 5

T1
p

2bf
; 0

� �
� T1

3p
2bf
; 0

� �
q0W=k1

¼ DT1;ABð0Þ
q0W=k1

¼ 2
Cf

1þ je�2Cf

1� je�2Cf

� �
ð38Þ

As the spatial sinusoidal input is both positive and negative, it is
evident that we cannot provide this condition experimentally.
However, we can have a uniform heat flux of qm P q0 superim-
posed upon the sinusoidal-in-space heat flux, as shown in Fig. 5.
The net result is simply the superposition of a sinusoidal heat flux
and a positive uniform heat flux. The resulting heat flux is always
positive which can be obtained experimentally.

Then, the steady state temperatures at the points A and B have
also to account for the quasi-steady state contribution due to qm.
However, if the surface two points are symmetrical with respect
to the middle plane x = L/2 of the thin film-substrate composite
(such as the points A and C of Fig. 5) and the boundary conditions
at x = 0 and x = L are of the same kind, the temperature rise due to
qm at A and C is exactly the same. The temperature difference is
hence given by Eq. (38), where DT1,AB(0) is now replaced with
DT1,AC(0).

Eq. (38) suggests a method to determine the thermal conductiv-
ity k1 from temperature measurements at A and C. A couple of
points are needed. The first is that the j ratio also contains k1 so
Eq. (38) cannot reduce to an explicit equation for k1. However, if
(see Section 7.1)

bf > bf ;dev �
n lnð10Þ
2W=L

) k <
8pW sinð2#Þ

n lnð10Þ ð39Þ

the thermal deviation effects due to the substrate on the steady
state temperature of the thin film at its boundary surface y = 0 are
negligible at the level of one part in 10n. This indicates that the
quantity between brackets on the RHS of Eq. (38) reduces to the
unity with an error less than 10�n. Then, solving this equation for
the conductivity gives

k1 ¼
1
bf

2q0L
DT1;ACð0Þ

ð40Þ
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For example, if W = 0.1 mm, 0 = 45� and n = 3 (i.e., error less
than 0.1%), we have from Eq. (39) that k < 364 lm. Therefore, it fol-
lows from constraint Eq. (37) that the integer f has to be larger than
4L/(364 lm). If L = 10 mm, we find that f P 110. Then, if we choose
f = 125, we obtain a laser wavelength of k = 320 lm; also,
K = 160 lm, mf = 0.0125p lm�1 and bf = 125p.

The second point is that, as the film becomes thin, the sinusoi-
dal-in-space variation requires a higher frequency bf to accurately
neglect the deviation effects due to the substrate, as indicated by
Eq. (39). Consequently, as we go up in frequency, the temperature
difference from peak to valley goes down, as indicated by Eq. (40).

8.1. Orthotropic thermal conductivity in thin films

If the thin film is orthotropic, then the heat diffusion Eq. (22a)
under the steady state condition becomes

k1x
@2T1

@x2 þ k1y
@2T1

@y2 ¼ 0 ð0 < x < L; 0 < y < WÞ ð41Þ

In such a case, if Eq. (39) is satisfied, then the thermal deviation
effects due to the substrate on the steady state temperature of the
thin film at its boundary surface y = 0 are negligible and we can de-
rive the following resultffiffiffiffiffiffiffiffiffiffiffiffiffi

k1xk1y

q
¼ 1

bf

2q0L
DT1;ACð0Þ

ð42Þ

For q0 = 10 W/mm2, DT1,AC(0) = 10 K, bf = 125p and L = 10 mm,
we have from Eq. (42) that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1xk1y

p
� 50 W=ðmKÞ. If we now con-

sider a graphite sheet [9] which has a high thermal conductivity
and anisotropy in the directions x and y (k1y = 5 W/(mK)), we ob-
tain that the lateral conductivity is of k1x = 500 W/(mK).

Finally, as the solution we propose to measure the thin film
thermal conductivity is a quasi-steady state technique, it is impor-
tant to know the time that it takes to reach the quasi-steady state
condition. This time may be evaluated by Eq. (26) setting g1 = p/2.
Then, if n = 3, L = 10 mm, W = 0.1 mm and bf = 125p (as above), we
have Cf = 1.25p and, hence, ~ts:s: � 0:39: As the thermal diffusivity of
the graphite sheet is of about 600 mm2/s, the time is of 6.5 ls,
which is an extremely short time.
9. Conclusions

Transient heat conduction solutions involving periodic-in-space
boundary conditions have been investigated in the paper. Special
attention has been given to those boundary conditions which
incorporate an eigenfunction parallel to the nonhomogeneous sur-
face. An advantage of these solutions is that the 2D solutions re-
duce to 1D solutions and the 3D solutions simplify to 2D or even
1D solutions; in each the solutions are simply multiplied by the gi-
ven periodic boundary eigenfunction. Although these solutions are
relatively simple, we were unable to find them documented in the
literature.

Several more advantages of these solutions have been discussed
in the paper. The steady state solutions for finite bodies in the
direction normal to the eigen-periodic surface reduce for high fre-
quencies to those for semi-infinite bodies in that direction. These
solutions have also introduced new concepts of penetration and
deviation frequencies (or distances). These concepts are important.
As an example, for a two-layer configuration the thermal deviation
effects due to the second layer on the first layer surface tempera-
ture can be neglected (at the level of 10�n) provided the frequency
Cf of the spatial eigen-periodic condition be larger than the devia-
tion frequency Cf,dev � n ln (10)/2.

Another advantage of the solutions is the insight that they pro-
vide. Simpler solutions suggest experiments for finding thermal
properties, thermal conductivity in the present case. Experiments
have been performed for periodic-in-space boundary conditions
so such conditions can be obtained particularly for thin layers.
Finding the thermal conductivity of thin layers is very important
in the electronics industry and fabrication of diamond and other
films. In addition the time constant to reach a steady (or quasi-)
steady state solution is very small. This can provide for rapid mea-
surement of conductivity even during a manufacturing operation.

Finally, if the conductivity of a thin film can be measured, the
same technique can be used for a larger thickness of material, pro-
vided the conductivity of the near-surface material is the same as
the bulk conductivity. One can visualize a portable devise that you
simply apply against a surface for a short while and get a measure
of the thermal conductivity.

Appendix A

The solution of the general problem denoted by XIJB00 YKLB
(xE)0T0 may be derived using Green’s functions [16,18,19]. The
temperature in dimensionless form is

Tð~x; ~y;~tÞ
TK

¼
Z ~t

~u¼0
IxEð~x; ~uÞ

@p

@ð~y0Þp
eGYKLð~y; ~y0; ~uÞ

� �
~y0¼0

d~u ðA:1Þ

where the order of derivative p = 1 for K = 1 (BC of the 1st kind,
T1 = T0); p = 0 for K = 2 (BC of the 2nd kind, T2 = q0W/k); and p = 0
for K = 3 (BC of the 3rd kind, T3 = hy=0T1W/k). In addition, we have

IxEð~x; ~uÞ ¼
Z 1

~x0¼0
Xf ðbf ; ~x

0ÞeGXIJð~x; ~x0;uþÞd~x0 ðA:2Þ

where Xf ðbf ; ~xÞ is the ‘‘eigen-periodic” variation along x of the non-
homogeneous boundary condition applied at y = 0. It is the solution
of the eigenvalue problem in the x-direction. (See ([16], p. 99) for a
complete list where the eigenvalues bf, f = 1, 2,. . ., are shown as
positive roots of the appropriate eigenconditions.)

Eq. (A.1) is now solved using the large-cotime Green’s functions
([16], Appendix X). They are (in dimensionless form, eGXIJ ¼ LGXIJ

and eGYKL ¼WGYKL)

eGXIJð~x; ~x0; ~uÞ ¼
X1
m¼0

e�C2
m ~ueNx;m

Xmðbm; ~xÞXmðbm; ~x
0Þ ðA:3aÞ

eGYKLð~y; ~y0; ~uÞ ¼
X1
n¼0

e�g2
n ~ueNy;n

Ynðgn; ~yÞYnðgn; ~y
0Þ ðA:3bÞ

where the eigenfunctions Xm and Yn, norms eNx;m ¼ Nx;m=L andeNy;n ¼ Ny;n=W , and eigenvalues bm and gn along x and y, respec-
tively, are given in ([16], p. 99). Also, Cm = bmW/L. Using Eq. (A.3a)
in the integral (A.2) and re-arranging give

IxEð~x; ~uÞ ¼
X1
m¼0

e�C2
m ~u

~Nx;m

Xmðbm; ~xÞ
Z 1

x0þ¼0
Xf ðbf ; ~x

0ÞXmðbm; ~x
0Þd~x0 ðA:4Þ

As the periodic nonhomogeneous boundary condition Xf ðbf ; ~x0Þ
has been chosen in such a way as to satisfy the homogeneous
boundary conditions in the x-direction, we have orthogonality in
Eq. (A.4). The result is

IxEð~x; ~uÞ ¼ Xf ðbf ; ~xÞe�C2
f

~u ðA:5Þ

where Cf = bfW/L. Substituting Eq. (A.5) in Eq. (A.1) gives

Tð~x; ~y;~tÞ
TK

¼ Xf ðbf ; ~xÞ
Z ~t

~u¼0
e�C2

f
~u @p

@ð~y0Þp
~GYKLð~y; ~y0; ~uÞ

� �
~y0¼0

d~u ðA:6Þ

Eq. (A.6) states that, for the case of spatially eigen-periodic but
time invariant surface heating, the temperature solution
can be written down very simply as the product of the same
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‘‘eigen-periodic” boundary condition by the solution of a 1D tran-
sient heat conduction problem along the nonhomogeneous direc-
tion y. Therefore, the current 2D problem ‘‘simply” reduces to an
effective 1D problem in the y-direction.

Following the approach given in Section 4.1, it may be proven
that the above problem is the transient heat conduction problem
in a fin of constant cross section aligned with the y-axis and having
a nonhomogeneous boundary condition of the Kth kind at y = 0 and
a homogeneous one of the Lth kind at y = W. This fin problem may
be denoted as YFKLB10T0.

Substituting Eq. (A.3b) in Eq. (A.6) and integrating over the co-
time give

Tð~x; ~y;~tÞ
TK

¼ Xf ðbf ; ~xÞ
X1
n¼0

Ynðgn; ~yÞ
~Ny;nðC2

f þ g2
nÞ

dpYn

dð~y0Þp
� �

~y0¼0

1� e�ðC
2
f þg2

nÞ~t
h i( )

ðA:7Þ

Only one single-summation appears in the solution Eq. (A.7) in
contrast to the double summation form typical of 2D transient
problems. Then, by using the algebraic identities given by Beck
and Cole in Ref. ([4], Appendix B) for the nine possible YFKL cases
(K, L = 1, 2, 3), the slow convergence of the steady state component
in Eq. (A.7) can be avoided.

References

[1] J.V. Beck, A. Haji-Sheikh, D.E. Amos, D.H.Y. Yen, Verification solution for partial
heating of rectangular solids, Int. J. Heat Mass Transfer 47 (2004) 4243–4255.

[2] F. de Monte, Transverse eigenproblem of steady-state heat conduction for
multi-dimensional two-layered slabs with automatic computation of
eigenvalues, Int. J. Heat Mass Transfer 47 (2004) 191–201.

[3] F. de Monte, Multi-layer transient heat conduction using transition time scales,
Int. J. Thermal Sci. 45 (2006) 882–892.
[4] J.V. Beck, K.D. Cole, Improving convergence of summations in heat conduction,
Int. J. Heat Mass Transfer 50 (2007) 257–268.

[5] J.V. Beck, R. McMasters, K.J. Dowding, D.E. Amos, Intrinsic verification methods
in linear heat conduction, Int. J. Heat Mass Transfer 49 (2006) 2984–2994.

[6] S.L. Shindé, J.S. Goela, High Thermal Conductivity Materials, Springer, New
York, 2006.

[7] O.W. Kaeding, E. Matthias, R. Zachai, H.-J. Fußer, P. Munzinger, Thermal
diffusivities of thin diamond films on silicon, Diamond Relat. Mater. 2 (1993)
185–1190.

[8] J.E. Graebner, Measurement of thermal diffusivity by optical excitation and
infrared detection of a transient thermal grating, Rev. Sci. Instrum. 66 (1995)
3903–3906.

[9] Y. Taguchi, Y. Nagasaka, Thermal diffusivity measurement of high-conductivity
materials by dynamic grating radiometry, International. J. Thermophys. 22
(2001) 289–299.

[10] H. Abe, T. Kanno, M. Kawai, K. Suzuki, Engineering Ceramics, Gihodo-Shuppan,
Tokyo, 1984.

[11] K. Watari, High thermal conductivity non-oxide ceramics, J. Ceramic Soc. Jpn.
109 (2001) S7–S16.

[12] D. Poulikakos, A. Bejan, Penetrative convection in porous medium bounded by
a horizontal wall with hot and cold spots, Int. J. Heat Mass Transfer 27 (10)
(1984) 1749–1757.

[13] R. Bradean, D.B. Ingham, P.J. Heggs, I. Pop, Buoyancyinduced flow adjacent to a
periodically heated and cooled horizontal surface in porous media, Int. J. Heat
Mass Transfer 39 (3) (1996) 615–630.

[14] J.-S. Yoo, Thermal convection in a vertical porous slot with spatially periodic
boundary temperatures: low Ra flow, Int. J. Heat Mass Transfer 46 (2) (2003)
381–384.

[15] F. de Monte, J.V. Beck, D.E. Amos, Diffusion of thermal disturbances in two-
dimensional Cartesian transient heat conduction, Int. J. Heat Mass Transfer 51
(25–26) (2008) 5931–5941.

[16] J.V. Beck, K.D. Cole, A. Haji-Sheikh, B. Litkouhi, Heat Conduction Using Green’s
Functions, Hemisphere Press, Washington, 1992.

[17] M.N. Ozisik, Heat Conduction, second ed., John Wiley, 1993.
[18] Z.H. Wang, S.K. Au, K.H. Tan, Heat transfer analysis using a Green’s function

approach for uniformly insulated steel members subject to fire, Eng. Struct. 27
(10) (2005) 1551–1562.

[19] Z.H. Wang, K.H. Tan, Green’s function approach for heat conduction:
application to steel members protected by intumescent paint, Numer. Heat
Transfer B: Fundam. 54 (6) (2008) 435–453.

[20] F.P. Incropera, D.P. DeWitt, Introduction to Heat Transfer, third ed., John Wiley,
1996.


	“Eigen-periodic”-in-space surface heating in conduction with application to conductivity measurement of thin films
	Introduction
	Problem formulation
	Solution procedure
	Temperature solution
	Governing equations of the 1D problem
	Solution procedure using “eigen-transformation”

	X11B00 Y2LB(xE)0T0 problems
	X11B00 Y22B(xE)0T0 problem
	X11B00 Y23B(xE)0T0 problem
	X11B00 Y20B(xE)T0 problem
	X11B00 Y2C0B(xE) problem
	Steady-state components of the X11B00 Y2LB(xE)0T0 problems

	Penetration frequency
	Deviation frequency
	Homogeneous boundary parallel to the heating surface
	Homogeneous boundary perpendicular to the heating surface

	Thermal conductivity in thin films
	Orthotropic thermal conductivity in thin films

	Conclusions
	Appendix A
	References


